文心一言 VS 讯飞星火 VS chatgpt (140)-- 算法导论11.4 5题

news/2023/12/1 12:05:18 标签: 算法, golang, chatgpt

五、用go语言,考虑一个装载因子为a的开放寻址散列表。找出一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的 2 倍。这两个探查期望数可以使用定理11.6 和定理 11.8 中给定的上界。

文心一言,代码正常运行:

在开放寻址法中,一次不成功的查找探查的期望次数可以由装载因子 a 计算。根据定理11.6,这是 1/(1-a)。对于一次成功的查找,其期望探查次数为 1。

我们需要找到一个 a 值,使得一次不成功查找的探查期望数是成功查找的探查期望数的两倍。因此,我们可以设置以下等式:

1/(1-a) = 2 * 1

解这个等式,我们可以得到 a 的值。

package main  
  
import "fmt"  
  
func main() {  
    // Solve for a in 1/(1-a) = 2 * 1  
    a := 1.0 / (2.0 - 1.0)  
    fmt.Printf("The value of a that satisfies the condition is: %.2f\n", a)  
``}

这段代码的输出应该是 a = 2,这就是我们需要的答案。

在这里插入图片描述

讯飞星火,代码正常运行:

首先,我们需要计算一次成功查找的探查期望数和一次不成功查找的探查期望数。根据定理11.6,我们可以得到以下公式:

一次成功查找的探查期望数 = 1 / (1 - a)

一次不成功查找的探查期望数 = 2 * 一次成功查找的探查期望数

接下来,我们需要找到一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。我们可以使用二分法来寻找这个a值。以下是Go语言代码实现:

package main

import (
	"fmt"
	"math"
)

func successProbability(a float64) float64 {
	return 1 / (1 - a)
}

func failureProbability(a float64) float64 {
	return 2 * successProbability(a)
}

func findA() float64 {
	left := 0.0001
	right := 0.5
	for math.Abs(right-left) > 1e-6 {
		mid := (left + right) / 2
		if failureProbability(mid) < successProbability(mid) {
			left = mid
		} else {
			right = mid
		}
	}
	return (left + right) / 2
}

func main() {
	a := findA()
	fmt.Printf("找到的a值为: %f
", a)
}

运行上述代码,我们可以找到满足条件的非零a值。

在这里插入图片描述

在这里插入图片描述

360智脑,代码不能运行:

要找到一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的 2 倍,可以使用以下代码:

package main
import (
    "fmt"
    "math/rand"
)

type OpenAddrHashTable struct {
    capacity int
    loadFactor float64
    table  int
}

func (o *OpenAddrHashTable) Init(capacity int, loadFactor float64) {
    o.capacity = capacity
    o.loadFactor = loadFactor
    o.table = make(OpenAddrHashTableBuckets, capacity)
    for i := range o.table {
        o.table[i] = make([]OpenAddrHashTableBucket, 0)
    }
}

func (o *OpenAddrHashTable) Put(key int) {
    index := o.hash(key)
    for _, k := range o.table[index] {
        if k == key {
            return
        }
    }
    o.table[index] = append(o.table[index], key)
}

func (o *OpenAddrHashTable) Get(key int) (int, bool) {
    index := o.hash(key)
    for _, k := range o.table[index] {
        if k == key {
            return k, true
        }
    }
    return 0, false
}

func (o *OpenAddrHashTable) hash(key int) int {
    hash := rand.Intn(o.capacity)
    return hash % o.capacity
}

type OpenAddrHashTableBuckets []OpenAddrHashTableBucket

func (o OpenAddrHashTableBuckets) Len() int {
    return len(o)
}

func (o OpenAddrHashTableBuckets) Less(i, j int) bool {
    return o[i].Get(0)[0] < o[j].Get(0)[0]
}

func (o OpenAddrHashTableBuckets) Swap(i, j int) {
    o[i], o[j] = o[j], o[i]
}

func main() {
    o := OpenAddrHashTable{}
    o.Init(10, 0.75)
    // ...
}

在代码中,我们使用了定理11.6 和定理 11.8 中给定的上界。其中,OpenAddrHashTableBuckets 是开放寻址散列表的buckets数组,OpenAddrHashTableBucket 是bucket中的元素。我们在初始化散列表时,需要确保每个bucket中存储的元素数量不超过其容量的一半。

在Put函数中,如果当前bucket中已经存在与key相等的元素,则直接返回,否则向bucket中添加新元素。

在Get函数中,如果当前bucket中已经存在与key相等的元素,则直接返回该元素和true;否则返回0和false。注意这里使用了定理 11.6 中给出的上界,即期望访问元素的次数不超过buckets数组长度的一半,因此需要在比较元素大小时使用小于符号。

在主函数中,我们初始化了一个OpenAddrHashTable对象,并调用了Init函数来设置散列表的容量和负载因子。然后,我们可以根据需要添加put和get函数以及其他操作。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

智谱清言:

首先,我们需要知道开放寻址散列表的探查期望次数公式:
E(h) = 1/p + (1/p + 1/p^2 + 1/p^3 + …)^(-1)
其中,p是散列表的大小,h是散列表的哈希函数。
根据定理11.6,一次成功查找的探查期望数为1/p。
现在,我们假设a是装载因子,即表中元素数量与表大小的比值。由于开放寻址散列表的装载因子不能超过1,所以我们知道a<1。
我们可以将一次不成功查找的探查期望数表示为E(h)2,根据题意,E(h)2 = 2 * 1/p。
我们将E(h)^2的公式代入散列表的探查期望次数公式中,得到:
2/p = 1/p + (1/p + 1/p^2 + 1/p^3 + …)^(-1) + (1/p + 1/p^2 + 1/p^3 + …)^(-1)
化简后得到:
1/p = (1/p + 1/p^2 + 1/p^3 + …)^(-1) * 2
两边同时取倒数,得到:
p = 2 + 1/p^2 + 1/p^3 + …
这是一个关于p的方程,我们可以通过迭代求解得到p的值。但是,由于p必须是一个整数,所以我们需要找到一个整数p,使得p满足上述方程。
通过尝试,我们可以发现p=4是一个满足条件的整数,因为:
4 = 2 + 1/4^2 + 1/4^3 + …
因此,当装载因子a=1/4时,一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。此时,散列表的探查期望次数为:
E(h) = 1/4 + (1/4 + 1/4^2 + 1/4^3 + …)^(-1)
这将带来更高的查找效率,因为相比于一次成功查找,一次不成功查找的代价更大。

在这里插入图片描述

通义千问:

在开放寻址散列中,如果哈希函数是随机的,并且负载因子是a,那么平均搜索长度(即一次查找的探查期望数)可以通过以下公式计算:

ASL = (1/(1-a)) * ln(1/a)

其中ln是自然对数。

因此,如果我们想要一次不成功的查找的探查期望数是一次成功查找的探查期望数的两倍,我们有:

(1/(1-b)) * ln(1/b) = 2 * (1/(1-a)) * ln(1/a)

我们可以将这个方程改写成:

b = 1 - exp(-2 * ln(1/a))

然后我们可以解出a:

a = 1 / exp((1-b)/2)

我们需要找到一个非零的a值来满足这个等式。我们可以从一个较小的a值开始(例如0.1),并逐步增加它,直到找到一个满足等式的a值。

在这里插入图片描述

天工:

根据定理 11.6,对于一个装载因子为 a 的开放寻址散列表,一次成功的查找所需的探查次数的期望值为:

E = 1 + (1/a) + (1/a^2) + …

根据定理 11.8,一次不成功的查找所需的探查次数的期望值为:

E’ = (1 - 1/a) + (1 - 1/a^2) + …

我们需要找到一个非零的 a 值,使得 E’ = 2E。

将 E 和 E’ 的公式代入上式,得到:

(1 - 1/a) + (1 - 1/a^2) + … = 2 * (1 + (1/a) + (1/a^2) + …)

化简得:

1 - 1/a + 1/a^2 - 1/a^3 + … = 1

这是一个等比数列求和的问题,我们可以使用求和公式:

S = a / (1 - r)

其中,S 是等比数列的和,a 是首项,r 是公比。对于本题,首项 a = 1,公比 r = 1/a。代入公式得:

1 / (1 - 1/a) = a

化简得:

a^2 - a + 1 = 0

使用求根公式解得:

a = (1 + sqrt(5)) / 2

因为 a 是一个装载因子,所以它的值应该在 0 和 1 之间。因此,我们可以选择 a = 0.618033988749895 作为一个合适的非零值。

验证一下,当 a = 0.618033988749895 时,E’ = 2E,即一次不成功的查找的期望次数是一次成功查找的期望次数的 2 倍。

在这里插入图片描述

灵小智:

首先,需要理解寻址散列表的基本概念。在寻址散列表中,每个键值对由一个或多个索引和一个值组成。在开放寻址散列表中,我们使用哈希函数将键映射到索引,但如果有多个键映射到同一个索引,我们需要通过额外的探查来确定键的值。

考虑一个装载因子为a的开放寻址散列表,假设哈希函数h将所有键映射到范围[0, a*n]的索引,其中n是散列表的大小。为了实现非零的a值使得一次不成功查找的探查期望数是成功查找期望数的两倍,我们可以采用以下策略:

首先,假设在理想情况下,所有键都成功地被哈希到不同的索引,此时探查期望数应该是每个可能的索引出现一次的概率,也就是(1/a)的n次方。但是实际情况下,可能会有一些冲突发生,也就是一些键被哈希到相同的索引。这时就需要进行额外的探查。

当哈希冲突发生时,我们有两个选择:1) 使用链地址法处理冲突,2) 执行一次额外的探查(即开放寻址法)。由于探查是随机的,所以我们不能控制它发生的概率。因此,为了满足你的要求,我们需要选择一个装载因子a的值,使得探查期望数E(m)与链表长度L(m)之和至少是成功查找期望数E(hit)的两倍。

定理11.6和定理11.8给出了探查期望数和链表长度的上界。这些定理指出,当装载因子a足够大时(具体地说,大约等于(log(n)+1)/log(1/d)),E(m)和L(m)之和与E(hit)大致相等。这里d是一个参数,通常被定义为冲突发生时每个额外查找成功的概率。这个概率通常取决于哈希函数的设计和冲突解决策略的选择。

因此,为了满足你的要求,我们可以选择a=d/(log(n)+1)。在这种情况下,一次不成功查找的探查期望数将是成功查找期望数的两倍。

注意:以上推理基于一些假设和简化,实际实现中可能需要进行一些调整和优化以适应特定的应用场景。此外,对于具体的编程语言如Go,你需要根据其语法和库来实现上述算法

在这里插入图片描述

chatgpt_275">chatgpt

要找到一个满足条件的装载因子a,我们需要根据定理11.6和定理11.8中给出的上界进行计算。这两个定理分别给出了一次成功查找和一次不成功查找的探查期望数的上界。

首先,我们回顾一下定理11.6和定理11.8:

  • 定理11.6:在开放寻址散列表中,一次成功查找的探查期望数最多为 (1 / (1 - a)) * ln(1 / (1 - a))。
  • 定理11.8:在开放寻址散列表中,一次不成功查找的探查期望数最多为 1 / (1 - a)。

我们要找到一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。即:

(1 / (1 - a)) <= 2 * ((1 / (1 - a)) * ln(1 / (1 - a)))

为了简化计算,我们可以假设ln(1 / (1 - a)) ≈ 0.5。这样我们可以将上述不等式转化为以下形式:

(1 / (1 - a)) <= 2 * ((0.5) * (1 / (1 - a)))

接下来,我们可以通过求解这个方程来得到满足条件的装载因子a:

(1 / (1 - a)) = 2 * ((0.5) * (1 / (1 - a)))

将等式两边乘以(1 - a)得到:

1 = 2 * 0.5 * (1 - a)

化简得到:

1 = (1 - a)

解方程可得:

a = 0

所以,当装载因子为零时,一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。

请注意,这个结果是在做了近似计算的基础上得出的。在实际应用中,我们通常会选择一个适当的装载因子来平衡存储空间和性能。

在这里插入图片描述


http://www.niftyadmin.cn/n/5201035.html

相关文章

Linux ps -ef|grep去除 grep --color=auto信息

linux 监控 进程判断是否启动可通过该指令实现 ps -ef|grep java指令结果为 # -v 参数有过滤作用 ps -ef|grep java |grep -v grep

百华鞋业受邀参加“首届中国诸葛亮杯若鲤大赛”暨名优特产展览会活动!

11月18日&#xff0c;山东百华鞋业有限公司参加了“首届中国诸葛亮杯若鲤大赛”暨名优特产展览会&#xff0c;诸多产品亮相展览会备受关注。 “首届中国诸葛亮杯若鲤大赛”在临沂现代渔业产业园举行。中国渔业协会锦鲤分会秘书长戴惠临&#xff0c;山东省农业农村厅总农艺师郭…

审计dvwa高难度命令执行漏洞的代码,编写实例说明如下函数的用法

审计dvwa高难度命令执行漏洞的代码 &#xff0c;编写实例说明如下函数的用法 代码&#xff1a; <?phpif( isset( $_POST[ Submit ] ) ) {// Get input$target trim($_REQUEST[ ip ]);// Set blacklist$substitutions array(& > ,; > ,| > ,- > ,$ …

Python Opencv实践 - 二维码和条形码识别

使用pyzbar模块来识别二维码和条形码。ZBar是一个开源软件&#xff0c;用来从图像中读取条形码&#xff0c;支持多种编码,比如EAN-13/UPC-A、UPC-E、EAN-8、代码128、代码39、交错2/5以及二维码。 pyzbar是python封装ZBar的模块&#xff0c;我们用它来做条形码和二维码的识别。…

柯桥考级日语学校,日语听力如何拿满分

今天&#xff0c;来分析一下能力考听力中的五道听力题的题型和解题技巧。 首先在N1和N2中&#xff0c;听力题型是一样的。 第一大题「課題理解」 第二大题「ポイント理解」 第三大题「概要理解」 第四大题叫做「即時応答」 第五大题叫做「統合理解」 名字不同&#xff0c;考点和…

scala的schema函数(算子)

在翻阅一些代码的时候&#xff0c;schema算子好像没碰到过&#xff0c;比较好奇structField这个类型&#xff0c;为什么可以直接用name参数&#xff0c;就翻阅了下资料&#xff1a; 在 Apache Spark 中&#xff0c;DataFrame 是一种分布式的数据集&#xff0c;它是以类似于关系…

详解Python安装requests库的实例代码

文章目录 前言基本用法基本的get请求带参数的GET请求解析json关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③Python小游戏源码五、面试资料六、Python兼职渠道 前…

第一次参加算法比赛是什么感受?

大家好&#xff0c;我是怒码少年小码。 冬日暖阳&#xff0c;好日常在。今天中午在食堂干饭的时候&#xff0c;我的手机&#x1f4f1;收到了一条收货信息。 阿&#xff1f;什么玩意儿&#xff1f;我又买啥了&#xff1f; 个败家玩意&#xff0c;我都准备好叨叨我自己&#x…

十七、SpringAMQP

目录 一、SpringAMQP的介绍&#xff1a; 二、利用SpringAMQP实现HelloWorld中的基础消息队列功能 1、因为publisher和consumer服务都需要amqp依赖&#xff0c;因此这里把依赖直接放到父工程mq-demo中 2、编写yml文件 3、编写测试类&#xff0c;并进行测试 三、在consumer…

大学计算机毕业设计真的很难完成吗?(资源持续更新~~)

近几年毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕业项目缺少创新和亮点&#xff0c;往往达不到毕业答辩的要求&#xff0c;于是培训教育机构专门针对各大院校毕业设计进行培训指导&#xff0c;衍生出很多届优秀学员的毕业项目。为了让广大同学都可以顺利通过…

opencv-形态学处理

通过阈值化分割可以得到二值图&#xff0c;但往往会出现图像中物体形态不完整&#xff0c;变的残缺&#xff0c;可以通过形态学处理&#xff0c;使其变得丰满&#xff0c;或者去除掉多余的像素。常用的形态学处理算法包括&#xff1a;腐蚀&#xff0c;膨胀&#xff0c;开运算&a…

openGauss学习笔记-129 openGauss 数据库管理-参数设置-查看参数值

文章目录 openGauss学习笔记-129 openGauss 数据库管理-参数设置-查看参数值129.1 操作步骤129.2 示例 openGauss学习笔记-129 openGauss 数据库管理-参数设置-查看参数值 openGauss安装后&#xff0c;有一套默认的运行参数&#xff0c;为了使openGauss与业务的配合度更高&…

【项目管理】甘特图(2)——甘特图教程

哈喽啊&#xff0c;你好&#xff0c;我是雷工。 通过上节初步认识了甘特图&#xff0c;本节学习如何一步步创建甘特图&#xff0c;以下为学习笔记。 一、样例展示 下边记录创建甘特图的操作步骤&#xff0c;完成的实际效果如下图所示&#xff1a; 实例图的上端展示项目的重要…

2021年03月 Scratch(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 小猫在沙漠中旅行好不容易找到了一杯水,初始位置如下图所示,下面哪个程序可以帮助它成功喝到水? A: B: C: D:

【JVM】JVM异常不打印堆栈信息 [ -XX:-OmitStackTraceInFastThrow ]

文章目录 一、背景二、原因三、 代码验证 一、背景 生产环境日志突然膨胀到100G, 为了定位问题,所以截取了部分报错日志, 问题是 堆栈信息呢? 哪里报的NPE在哪??? 信息如下: [ERROR] 2020-12-09 09:41:50.053 - [taskAppIdTASK-1919-33805-97659]:[156] - wait task qu…

linux之chmod命令

在linux系统中经常遇到需要对文件修改读写执行的权限&#xff0c;下面对chomod命令进行梳理总结。 1、文件权限 在linux系统中&#xff0c;每个文件都有归属的所有者和所有组&#xff0c;并且规定了文件的所有者、以及其他人对文件所拥有的可读&#xff08;r&#xff09;、可写…
最新文章